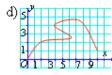

Tema 13. FUNCIONES

Autoevaluación

1. Considera la relación: "A cada número de dos cifras se le asocia la cifra de sus unidades".


- a) Indica mediante una tabla qué valor le correspondería a los números 12, 15, 21, 51 y 67.
- b) Explica por qué esa relación es una función.
- c) ¿Cuál es la variable independiente y cuál es la dependiente?
- d) Indica su dominio y su recorrido.
- e) Da todos los números que se transforman en 4; esto es, la imagen inversa de 4: $f^{-1}(4)$.

2. Indica si alguna de las siguientes gráficas puede determinar o no una función. Razona la respuesta.

En el caso de que sean funciones indica su dominio y su recorrido. ¿Alguna de ellas es continua?

3. Para la función c), dada por la gráfica del ejercicio anterior, completa la siguiente tabla de valores:

х	0	1	2	4	6	7	10
y							

4. Determina el dominio de las siguientes funciones:

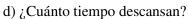
a)
$$f(x) = x^2 - 3x$$

b)
$$f(x) = \sqrt{3-x}$$

c)
$$f(x) = \frac{2x+1}{3x-2}$$

a)
$$f(x) = x^2 - 3x$$
 b) $f(x) = \sqrt{3-x}$ c) $f(x) = \frac{2x+1}{3x-2}$ d) $f(x) = \begin{cases} -x-3, & \text{si } x < -1 \\ x^2 - 3, & \text{si } x \ge 0 \end{cases}$

5. Halla, justificando las respuestas, el dominio de las siguientes funciones:


a)
$$f(x) = \frac{1 - 4x + x^2}{x^2 - 4x + 3}$$
 b) $g(x) = \frac{\sqrt{3x - 6}}{2 - 3x}$

b)
$$g(x) = \frac{\sqrt{3x-6}}{2-3x}$$

c) Halla el valor de f(2), f(4), g(-1) y g(5).

6. En la siguiente gráfica se muestra la relación entre el tiempo y la distancia recorrida en una marcha ciclista.

- a) ¿Qué mide la variable independiente? ¿Y la variable dependiente?
- b) Indica su dominio y recorrido.
- c) ¿Qué distancia aproximada recorren en la segunda hora de carrera?

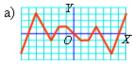
- e) ¿En que hora recorren más kilómetros?
- f) ¿Cuánto dura la marcha y qué velocidad media han llevado?

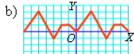
7. Representa, hallando algunos de sus puntos, las funciones:

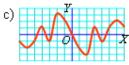
a)
$$f(x) = \begin{cases} -x - 3, & \text{si } x < -1 \\ x^2 - 3, & \text{si } x \ge 0 \end{cases}$$

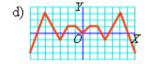
b)
$$f(x) = \begin{cases} -x-2, & \text{si } x < 0 \\ x^2 - 2, & \text{si } x \ge 0 \end{cases}$$

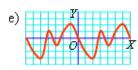
Indica en cada caso el dominio de f. ¿Son funciones continuas?

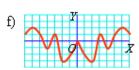

- **8.** A partir de la función $f(x) = x^2 1$ representa gráficamente:
- a) f(x)
- c) 3 f(x)
- d) $2 \cdot f(x)$


Escribe en cada caso la expresión analítica de cada una de las funciones anteriores.

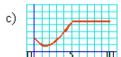

- 9. Para cada una de las funciones anteriores, indica, a partir de su gráfica, sus intervalos de crecimiento y de crecimiento; sus máximos y mínimos.
- 10. Representa gráficamente las siguientes funciones escalonadas:
- a) $f(x) = \begin{cases} 2, & \text{si} 3 < x < 1 \\ 1, & \text{si} 1 \le x < 4 \end{cases}$
- b) $f(x) = \begin{cases} 1, & \text{si} 4 < x < 1 \\ -1, & \text{si} 1 \le x < 2 \\ 2, & \text{si} \ x > 2 \end{cases}$

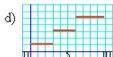

Indica en cada caso el dominio de f.


- 11. Representa gráficamente la función $f(x) = \left| -x^2 + 3x \right|$. Escribe su expresión analítica como una función definida a trozos.
- 12. Dadas $f(x) = x^2 1$ y $g(x) = \frac{2x}{x+1}$, halla f(g(x)) y g(f(x)). Determina el domino de cada una de las cuatro funciones. Calcula: f(g(1)), f(g(-2)), g(f(1)) y g(f(-2)).
- 13. Halla las inversas de las funciones $f(x) = x^2 1$ y $g(x) = \frac{2x}{x+1}$.
- 14. Clasifica las funciones que siguen según su tipo de simetría y su periodo.



- 15. Determina la simetría de las siguientes funciones:


- a) $f(x) = x^3 3x$ b) $f(x) = \frac{3}{x}$ c) $f(x) = \frac{x^2 3x}{2 x}$ d) $f(x) = +\sqrt{4 x^2}$.


Indica en cada caso el dominio de f.

16. A partir de las gráficas de las siguientes funciones, di si son continuas; en caso contrario, indica los puntos de discontinuidad.

Soluciones:

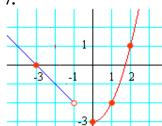
1. a)

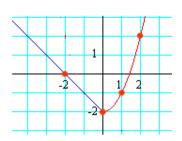
Número de dos cifras	12	15	21	51	67
Cifra de las unidades	2	5	1	1	7

b) Es una función, pues la cifra de las unidades de cada número de dos cifras es única: la correspondencia es única. c) Independiente: cualquier número de dos cifras. Dependiente: la cifra de las unidades del número elegido. d) Dominio: Todos los números de dos cifras, desde 10 hasta 99. Recorrido = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. e) $f^{-1}(4) = \{14, 24, 34, ..., 94\}$.

2. a) No es función: al valor x = 6 le corresponden dos valores, 1 y 5. (Al valor 10 le corresponden otros dos). b) Sí. A cada valor de x sólo le corresponde un valor de y. Dom: "Números enteros del 1 a 10". Recorrido = $\{1, 2, 3, 4\}$. c) Sí. Para cada valor de la magnitud dada en el eje de abscisas le corresponde un solo valor de la magnitud representada en el eje de ordenadas. Dom = [0, 10]; Recorrido = [0, 5]. d) No. Hay valores de x con dos o tres imágenes. Por ejemplo, 5. La única función es la dada en c).

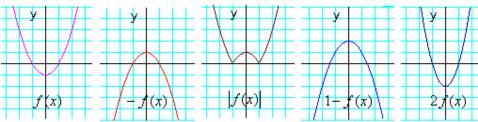
3.


х	0	1	2	4	6	7	10
у	0	3	3	3	5	2	1


4. a) **R.** b) $(-\infty, 3]$. c) **R** $- \{2/3\}$. d) $(-\infty, -1) \cup [0, +\infty)$..

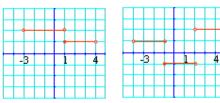
5. a) $Dom(f) = \mathbf{R} - \{1, 3\}$. b) $Dom(g) = [2, +\infty)$. c) f(2) = 3; f(4) = 1/3; g(5) = -3/13.

6. a) V. indep: tiempo en horas; la dependiente, mide los km recorridos. b) Dominio: de 0 a 4 h. Rec.: de 0 a 80 km. c) 20 km. d) 0,5 h. e) En la primera: 30 km. f) 4 horas; 20 km/h.


7.

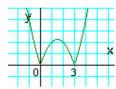
a) Dom: $\mathbf{R} - [-1, 0)$. Es continua en los intervalos $(-\infty, -1)$ y $(0, +\infty)$. No es continua en ningún punto del intervalo [-1, 0]. b Dom: \mathbf{R} . Es continua.

8.



a)
$$-f(x) = -x^2 + 1$$
. b) $|f(x)| = \begin{cases} x^2 - 1, & \text{si } x < -1 \\ -x^2 + 1, & \text{si } -1 \le x \le 1 \end{cases}$. c) $1 - f(x) = 2 - x^2$. $x^2 - 1, & \text{si } x > 1$

d) $2 \cdot f(x) = 2x^2 - 2$


9. a) y c): Crece, $(-\infty, 0)$; decrece, $(0, +\infty)$; a) Máximo en (0, 1); c) Máximo en (0, 2). b) Decrece, $(-\infty, -1)$ y (0, 1); crece, (-1, 0) y $(1, +\infty)$; mínimos en (-1, 0) y (1, 0); máximo en (0, 1). d) Dec-rece, $(-\infty, 0)$; crece, $(0, +\infty)$. Mínimo en (0, -2).

10.

a) Dom: (-3, 4]. b) Dom: $(-4, -1) \cup (-1, 2) \cup (2, +\infty)$.

11.

$$f(x) = \left| -x^2 + 3x \right| = \begin{cases} x^2 - 3x, & \text{si } x < 0 \\ -x^2 + 3x, & \text{si } 0 \le x \le 3 \\ x^2 - 3x, & \text{si } x > 3 \end{cases}.$$

12.
$$f(g(x)) = \frac{3x^2 - 2x - 1}{(x+1)^2}$$
, Dom = $\mathbb{R} - \{-1\}$; $g(f(x)) = \frac{2x^2 - 2}{x^2}$, Dom = $\mathbb{R} - \{0\}$. $f(g(1)) = 0$,

$$f(g(-2)) = 15$$
, $g(f(1)) = 0$, $g(f(-2)) = 3/2$.

13.
$$f^{-1}(x) = \sqrt{x+1}$$
; $g^{-1}(x) = \frac{x}{2-x}$.

14. a) y c) simétricas respecto del origen; d) y f) simétricas respecto del eje *OY*. b) y e) periódicas de periodo 7.

15. Determina la simetría de las siguientes funciones:

a) Impar. b) Impar. c) No es simétrica. d) Par. Dominios: a), \mathbf{R} ; b), $\mathbf{R} - \{0\}$; c), $\mathbf{R} - \{2\}$; d) [-2, 2].

16. a) Continua. b) Discontinua en x = 2 y en x = 7. c) Continua. d) Discontinua en x = 3 y en x = 6.