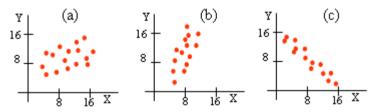
Distribuciones bidimensionales. (Pendientes de Matemáticas CCSS)

Tipo I. Correlación y regresión

1. El número de españoles (en millones) ocupados en la agricultura, para los años que se indican, era:


Año	1980	1982	1984	1986	1988	1990	1992	1994
Ocupados	2,1	2,04	1,96	1,74	1,69	1,49	1,25	1,16

a) ¿Podría explicarse su evolución mediante una recta de regresión?

b) ¿Qué limitaciones tendrían las estimaciones hechas por esa recta?

[sol] a) Si; b) No vale para hacer estimaciones alejadas de los años considerados.

2. Asocia las rectas de regresión y = -x + 16, y = 2x - 12, y = 0.5x + 5 a las nubes de puntos siguientes:

3. Asigna los coeficientes de correlación lineal r = 0.4, r = -0.85 y r = 0.7, a las nubes del problema anterior.

[sol] a) Respectivamente: (c), (b), (a). b) Respectivamente: (a), (b), (c)

Tipo II. Cálculo de la correlación y regresión

4. [S] a) Calcula la recta de regresión de Y sobre X en la distribución siguiente realizando todos los cálculos intermedios.

X	10	7	5	3	0
Y	2	4	6	8	10

b) ¿Cuál es el valor que correspondería según dicha recta a X=7?

[sol] a) y = -0.8276x + 10.138; b) 4.3448.

5. **[S]** El número de bacterias por unidad de volumen, presentes en un cultivo después de un cierto número de horas, viene expresado en la siguiente tabla:

X: Nº de horas	0	1	2	3	4	5
Y: Nº de bacterias	12	19	23	34	56	62

Calcula:

- a) Las medias y desviaciones típicas de las variables, número de horas y número de bacterias.
- b) La covarianza de la variable bidimensional.
- c) El coeficiente de correlación e interpretación.
- d) La recta de regresión de Y sobre X.

[sol] a) $\bar{x} = 2.5$; $s_x = 1.70782$; $\bar{y} = 34.3333$; $s_y = 18.6964$; b) 31; c) 0.97086. d) y = 10.6285x + 7.7619

1

6. La tabla siguiente muestra las notas obtenidas por 8 alumnos en un examen, las horas de estudio dedicadas a su preparación y las horas que vieron la televisión los días previos al examen.

Nota	5	6	7	3	5	8	4	9
Horas de estudio	7	10	9	4	8	10	5	14
Horas de TV	7	6	2	11	9	3	9	5

- a) Representa gráficamente los diagramas correspondientes a nota-estudio y nota-TV.
- b) ¿Se observa correlación entre las variables estudiadas? ¿De qué tipo? ¿En qué caso estimas que es más fuerte?

[sol] b) Sí. Directa; inversa.

- 7. Con los datos del problema anterior, halla el coeficiente de correlación de nota-estudio y nota-TV. ¿Qué puede deducirse con más precisión conociendo la nota que obtuvo una persona en el examen: el tiempo que dedicó al estudio o el que dedicó a ver la televisión? [sol] 0,943382 y -0,846283. El tiempo que dedicó al estudio.
- **8**. Con los mismos datos, halla las rectas de regresión correspondientes y estima para un alumno que sacó un 2 en el examen:
- a) Las horas que estudió.
- b) Las horas que vio la TV.

[sol] a) Est = $-0.246753 + 1.46753 \cdot \text{Nota}$; 2.7 h. b) TV = $14.1299 - 1.2987 \cdot \text{Nota}$; 11.5 h.

Tipo III. Estimación a partir del a recta de regresión

9. La altura, en cm, de 8 padres y del mayor de sus hijos varones, son:

Padre	170	173	178	167	171	169	184	175
Hijo	172	177	175	170	178	169	180	187

- a) Calcula la recta de regresión que permita estimar la altura de los hijos dependiendo de la del padre; y la del padre conociendo la del hijo.
- b) ¿Qué altura cabría esperar para un hijo si su padre mide 174? ¿Y para un padre, si su hijo mide 190 cm?

[sol] a) $H = 68,1853 + 0,621859 \cdot P$; $P = 77,4406 + 0,545082 \cdot H$. b) 176,4 cm; 181 cm.

10. [S] Durante su primer año de vida han pesado a Marta cada mes. En la tabla siguiente se dan sus pesos:

х	1	2	3	4	5	6	7	8	9	10	11	12
у	3,2	3,7	4,2	5,3	5,7	6,5	6,8	7,2	7,9	7,7	8	8,5

En esta tabla, x representa la edad en meses e y el peso en kilogramos.

- a) Calcula la media y la desviación típica de los pesos.
- b) Determina la ecuación de la recta de regresión de *y* sobre *x*, explicando detalladamente los cálculos que haces y las fórmulas que utilizas.

[sol] a) 6,225; 1,7181 b) y = 0,48706x + 3,05909

11. [S] Utilizando la recta de regresión de x sobre y correspondiente a la distribución siguiente:

x = altura sobre el nivel del mar	0	184	231	481	911
y = temperatura media en °C	20	18	17	12	10

Calcula la altitud de una ciudad en la que la temperatura media es de 15°. [sol] 392,7 m.