Números complejos (Pendientes Matemáticas I)

1. Representa gráficamente el opuesto y el conjugado de:

a)
$$2 + 3i$$

b)
$$-1 + i$$

c)
$$-2 - 2i$$

d)
$$4 - 3i$$

[Sol] a)
$$-2 - 3i$$
, $2 - 3i$; b) $1 - i$, $-1 - i$; c) $2 + 2i$, $-2 + 2i$; d) $-4 + 3i$, $4 + 3i$.

2. Completa la tabla:

Z	-z	\overline{z}	1/z
2-3i			
	-1 + 4i		
		3 – 3i	
			i

[Sol] 1^a fila, -2+3i, 2+3i,
$$\frac{2}{13} + \frac{3}{13}$$
i; 2^a fila, 1-4i, 1+4i, $\frac{1}{17} + \frac{4}{17}$ i; 3^a fila, 3+3i, -3-3i, $\frac{1}{6} - \frac{1}{6}$ i; 4^a fila, -i, i, i.

3. Realiza las siguientes operaciones:

a)
$$\left(-\frac{5}{3}-i\right)+\left(1+\frac{3}{2}i\right)$$

a)
$$\left(-\frac{5}{3}-i\right)+\left(1+\frac{3}{2}i\right)$$
 b) $\left(-\frac{1}{4}-6i\right)-\left(-\frac{5}{4}+\frac{3}{2}i\right)$ c) $(2-i)\left(\frac{5}{2}+3i\right)$

c)
$$(2-i)(\frac{5}{2}+3i)$$

d)
$$(3-i)(1+\frac{3}{2}i)$$
 e) $(-2i)(1+\frac{3}{2}i)$

e)
$$(-2i)(1+\frac{3}{2}i)$$

f)
$$(3-2i)\cdot(3+2i)$$

[Sol] a)
$$-\frac{2}{3} + \frac{1}{2}i$$
; b) $1 - \frac{15}{2}i$; c) $8 + \frac{7}{2}i$; d) $\frac{9}{2} + \frac{7}{2}i$; e) $3 - 2i$; f) 13

- **4.** Calcula: a) $i^{10} + i^{141} + i^{15}$ b) $(3-2i)^2$ c) $\left(1 + \frac{3}{2}i\right)^2$ d) $(-1+2i)^6$

[Sol] a) -1; b) 5 - 12i; c)
$$-\frac{5}{4}$$
 + 3i; d) 117 - 44i.

5. Dados $z_1 = 3 - 2i$, $z_2 = -3 + i$ y $z_3 = 5i$, calcula:

a)
$$z_1 + z_2 + z_3$$

b)
$$z_1 + 2z_2 - z_3$$

c)
$$z_1(z_2 + z_3) + z_3$$

d)
$$\frac{z_2 - z_1}{z_3}$$

a)
$$z_1 + z_2 + z_3$$

b) $z_1 + 2z_2 - z_3$
d) $\frac{z_2 - z_1}{z_3}$
e) $(z_1 + 2z_3)(z_2 - z_1)$

[Sol] a)
$$4i$$
; b) $-3-5i$; c) $3+29i$; d) $\frac{3}{5}+\frac{6}{5}i$; e) $-42-39i$.

6. Efectúa las siguientes operaciones:

a)
$$\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^8$$
 b) $\left(2\sqrt{3} - 2i\right)^5$ c) $\frac{2}{3-i}$

b)
$$\left(2\sqrt{3}-2i\right)$$

c)
$$\frac{2}{3-i}$$

$$d) \frac{1+i}{1-i}$$

[Sol] a)1; b)
$$-512\sqrt{3} - 512i$$
; c) $\frac{3}{5} + \frac{1}{5}i$; d) $\dot{1}$.

- 7. (PAU) a) ¿Qué relación existe entre el conjugado del opuesto de un número complejo, z = a + bi, y el opuesto del conjugado del mismo número? Razone la respuesta.
- b) Calcule los números x e y de modo que $\frac{3-xi}{1+2i} = y+2i$.

[Sol] a) son iguales; b)
$$x = -16$$
, $y = 7$.

8. Calcula en cada caso el valor que ha de tener k para que el resultado de la operación correspondiente sea un número imaginario puro:

a)
$$(2-3i)(1+ki)$$

b)
$$\left(k + \sqrt{2}i\right)^2$$

c)
$$\frac{k-2i}{8+2i}$$

[Sol] a) $k = -\frac{2}{2}$; b) $k = \pm \sqrt{2}$; c) $k = \frac{1}{2}$.

9. Calcula en cada caso el valor que ha de tener k para que el resultado de la operación correspondiente sea un número real:

a)
$$(3+ki)(6-3i)$$

$$b) \frac{k-2i}{5-6i}$$

c)
$$\frac{1+i}{k+2i}$$

[Sol] a) $k = \frac{3}{2}$; b) $k = \frac{5}{3}$; c) k = 2.

10. Expresa en forma binómica:

a)
$$2(\cos 135^{\circ} + i \sin 135^{\circ}) \cdot 3(\cos 45^{\circ} + i \sin 45^{\circ})$$
 b) $[2 (\cos 30^{\circ} + i \sin 30^{\circ})]^{5}$

c)
$$\frac{4(\cos 240^{\circ} + i \operatorname{sen} 240^{\circ})}{\frac{1}{2}(\cos 30^{\circ} + i \operatorname{sen} 30^{\circ})}$$

d)
$$2\left(\cos\frac{5\pi}{6} + i \operatorname{sen}\frac{5\pi}{6}\right) \cdot \frac{1}{4}\left(\cos\frac{\pi}{3} + i \operatorname{sen}\frac{\pi}{3}\right)$$

[Sol] a) -6; b) $-16\sqrt{3} + 16i$; c) $-4\sqrt{3} - 4i$; d) $-\frac{\sqrt{3}}{4} - \frac{1}{4}i$

11. Realiza las siguientes operaciones y expresa el resultado en forma binómica:

a)
$$2_{210^{\circ}} \cdot \left(\frac{1}{4}\right)_{60^{\circ}}$$

b)
$$\left(\frac{1}{3}\right)_{150^{\circ}}$$
 : $3_{30^{\circ}}$

c)
$$\left(\sqrt{2}\right)_{\frac{\pi}{3}} \cdot 2_{\frac{4\pi}{3}}$$

[Sol] a) $-\frac{1}{2}i$; b) $-\frac{1}{18}i$; c) $\sqrt{2}-\sqrt{6}i$

12. Si $z = 4_{60^{\circ}}$ y $z' = 2_{45^{\circ}}$ calcula:

a)
$$z + z'$$

c)
$$\frac{z}{z'}$$

d)
$$z^2 \cdot z$$

e)
$$z^2 \cdot \overline{z}$$

a)
$$z + z'$$
 b) $z \cdot z'$ c) $\frac{z}{z'}$ d) $z^2 \cdot z'$ e) $z^2 \cdot \overline{z'}$ f) $(-z) \cdot z'$

[Sol] a) $(2+\sqrt{2})+(2\sqrt{3}+\sqrt{2})i$; b) 8_{105° ; c) 2_{15° ; d) 32_{165° ; e) 32_{75} ; f) 8_{285°

13. Encuentra la ecuación que tiene por raíces:

a)
$$2 - i y 2 + i$$

b) 2,
$$-3$$
, $i y - i$

[Sol] a)
$$z^2 - 4z + 5 = 0$$
; b) $z^4 + z^3 - 5z^2 + z - 6 = 0$.

14. Halla las soluciones, reales o complejas, de las ecuaciones:

a)
$$z^2 - 2z + 5 = 0$$

b)
$$z^4 - 256 = 0$$

a)
$$z^2 - 2z + 5 = 0$$
 b) $z^4 - 256 = 0$ c) $z^4 + (1 - \sqrt{3}i) = 0$.

[Sol] a)
$$1 + 2i$$
, $1 - 2i$; b) 4, -4, 4i, -4i; c) $(\sqrt[4]{2})_{30^\circ}$, $(\sqrt[4]{2})_{20^\circ}$, $(\sqrt[4]{2})_{210^\circ}$, $(\sqrt[4]{2})_{300^\circ}$

15. Resuelve las siguientes ecuaciones:

a)
$$z^5 - 1 = 0$$

a)
$$z^5 - 1 = 0$$
 b) $z^3 + 8 = 0$

[Sol] a) 1_{0°}; 1_{72°}; 1_{144°}; 1_{216°} y 1_{288°}; b) 2_{60°}; 2_{180°} y 2_{300°};