Tema 10. FUNCIONES TRIGONOMÉTRICAS

Resumen

Razones trigonométricas de un ángulo

Dado un ángulo cualquiera, O, se define:

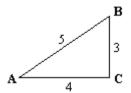
$$\sin \hat{O} = \frac{AA'}{OA} = \frac{\text{cateto opuesto}}{\text{hipotenusa}}; \cos \hat{O} = \frac{OA'}{OA} = \frac{\text{cateto contiguo}}{\text{hipotenusa}};$$

$$tag \hat{O} = \frac{AA'}{OA'} = \frac{cateto opuesto}{cateto contiguo}$$

• El ángulo O puede medirse en grados o en radianes. (Un radian es un ángulo que abarca un arco de longitud igual al radio con el que ha sido trazado). La relación entre ambas unidades es $360^{\circ} = 2\pi$ radianes \rightarrow La circunferencia completa abarca 2π radianes. Las calculadoras disponen de las teclas DEG y RAD, para grados y radianes, respectivamente.

Ejemplos: Para el triángulo adjunto se tiene:

sen
$$\hat{A} = \frac{3}{5} = 0.6$$
; $\cos \hat{A} = \frac{4}{5} = 0.8$; $\tan \hat{A} = \frac{3}{4} = 0.75$



Otras razones trigonométricas:

$$\underline{Cosecante} \colon cosec\alpha = \frac{1}{sen\,\alpha} \cdot \underline{Secante} \colon sec\alpha = \frac{1}{cos\alpha} \cdot \underline{Cotangente} \colon cotag\,\alpha = \frac{1}{tag\,\alpha}$$

Relaciones fundamentales entre las razones trigonométricas de un ángulo

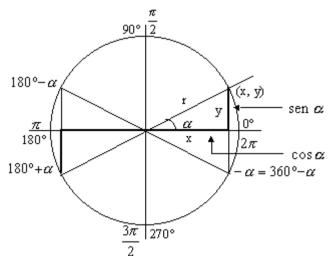
$$sen^2 \alpha + cos^2 \alpha = 1;$$
 $tag \alpha = \frac{sen \alpha}{cos \alpha};$
 $1 + tag^2 \alpha = \frac{1}{cos^2 \alpha}$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Razones trigonométricas en la circunferencia Con ayuda de la circunferencia:

$$sen \alpha = \frac{y}{r} \rightarrow si \ r = 1, sen \alpha = y;$$

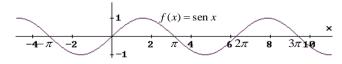
$$cos \alpha = \frac{x}{r} \rightarrow si \ r = 1, cos \alpha = x$$



Como x < r e y < r, para cualquier ángulo α se verifica:

$$-1 \le \text{sen } \alpha \le 1$$
 $-1 \le \text{cos } \alpha \le 1$

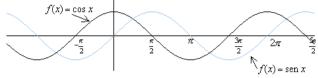
<u>La función seno</u>: f(x) = sen x



- Es periódica de periodo p = 2π . Esto es: sen $x = \text{sen}(x + 2\pi)$, para cualquier valor de x.
- Está definida siempre: Dom = \mathbf{R} .
- Su recorrido es el intervalo [-1, 1].
- Es una función impar, pues $f(-x) = \operatorname{sen}(-x) = -\operatorname{sen} x = -f(x)$. Por tanto, es simétrica respecto del origen.

<u>La función coseno</u>: Puede definir a partir del seno así: $f(x) = \cos x = \sin \left(x + \frac{\pi}{2}\right)$. Por tanto,

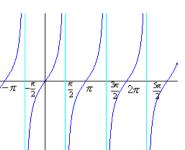
su gráfica será idéntica a la del seno pero con un desfase de $\pi/2$ (se traslada $\pi/2$ a la izda).



- Es periódica de periodo p = 2π . Esto es: $\cos x = \cos(x + 2\pi)$, para cualquier valor de x.
- Dom = \mathbf{R} . Recorrido: [-1, 1].
- Es una función par, pues $f(-x) = \cos(-x) = -\cos x = -f(x)$. Por tanto, es simétrica respecto del eje OX.

<u>La función tangente</u> ($f(x) = \tan x$): $f(x) = \tan x = \frac{\sin x}{x}$

- Es periódica de periodo $p = \pi$: tag $x = \text{tag}(x + \pi)$.
- Está definida siempre que $\cos x \neq 0$: esto es, si $x \neq \frac{\pi}{2} + k\pi$
- Tiene por asíntotas verticales las rectas: $x = \pm \frac{\pi}{2} + k\pi$.



Ecuaciones trigonométricas. La incógnita aparece ligada a una razón trigonométrica.

• Ecuación a · sen (bx) = c \rightarrow sen (bx) = c/a \Rightarrow bx = arcsen (c/a) \Rightarrow x = [arcsen (c/a)]/b

Ejemplo: 2 sen
$$3x = 1 \Rightarrow x = \frac{1}{3}\arcsin(1/2) \Rightarrow x = \frac{1}{3}\cdot\begin{cases} 30^{\circ} + 360^{\circ} \cdot n \\ 150^{\circ} + 360 \cdot n \end{cases} \Rightarrow x = \begin{cases} 10^{\circ} + 120^{\circ} \cdot n \\ 50^{\circ} + 120 \cdot n \end{cases}$$

• Ecuación $a \cdot \cos(bx) = c \rightarrow \cos(bx) = c/a \Rightarrow bx = \arccos(c/a) \Rightarrow x = [\arccos(c/a)]/b$

Ejemplo:
$$\sqrt{2}\cos x = 1 \Rightarrow x = \arccos\frac{1}{\sqrt{2}} \Rightarrow x = \begin{cases} 45^{\circ} + 360^{\circ} \cdot n \\ 315^{\circ} + 360 \cdot n \end{cases}$$

• Ecuación $a \cdot tag(bx) = c \rightarrow tag(bx) = c/a \Rightarrow bx = arctag(c/a) \Rightarrow x = [arctag(c/a)]/b$.

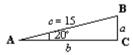
Ejemplo: $\tan x = 2 \Rightarrow x = \arctan 2 \Rightarrow x = 63,43^{\circ} + n.180^{\circ}$

Los valores de arcsen, arccos y arctag se hallan con la calculadora: $\left|\sin^{-1}\right|$, $\left|\cos^{-1}\right|$ y $\left|\tan^{-1}\right|$.

Resolución de triángulos rectángulos

 \Box Sabiendo que A = 40° y b = 10 cm, halla a, c y B. $\cdot B = 90^{\circ} - A = 90^{\circ} - 40^{\circ} = 50^{\circ}$ $\cdot \cos 40 = \frac{10}{c} \Rightarrow$ $c = \frac{10}{\cos 40} = \frac{10}{0,766} = 13,05$ $ao tag 40 = \frac{a}{10} \implies a = 10 \text{ tag } 40^{\circ}$ $= 10 \cdot 0.839 = 8.39$ cm.

 \Box Sabiendo que A = 20° y c = 15 cm, halla a, b y B.



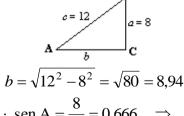
· B = 90° - A= 90° - 20° = 70°
·
$$\cos 20 = \frac{b}{15} \Rightarrow$$

 $b = 15 \cos 20° = 15 \cdot 0.94 =$
14.1 cm

·
$$sen 20 = \frac{a}{15} \Rightarrow$$

 $a = 15 \text{ sen } 20^{\circ} = 15 \cdot 0,342 =$
5,13 cm.

 \Box Sabiendo que a = 8 cm y c = 12 cm, halla b, A y



$$\cdot \text{ sen A} = \frac{8}{12} = 0,666... \Rightarrow$$

 $A = arcsen 0,666 = 41,81^{\circ}$ $\cdot B = 90^{\circ} - 41,81^{\circ} = 48,19^{\circ}$