Lugares geométricos. Cónicas (Pendientes de Matemáticas I)

Tipo I: Lugares geométricos

- 1. Determina el lugar geométrico de los puntos del plano que equidistan del punto A(2, -3) y [Sol] $4x^2 + y^2 + 4xy - 18x + 26y + 64 = 0$. de la recta r: x - 2y - 1 = 0.
- 2. Determina la mediatriz del segmento de extremos A(-2, 3) y B(4, 1).

[Sol] 3x - y - 1 = 0.

3. Calcula las bisectrices de las rectas r: 2x + y - 3 = 0 y s: 2x - 4y + 5 = 0.

[Sol] 2x + 6y - 11 = 0; 6x - 2y - 1 = 0.

4. Calcula el lugar geométrico de los puntos del plano cuya distancia a la recta r: 3x - 4y + 2= 0 sea igual al cuadrado de su distancia al punto A(3, -2).

[Sol] $5x^2 + 5y^2 - 33x + 24y + 63 = 0$; $5x^2 + 5y^2 - 27x + 16y + 67 = 0$

5. [S] Determina la ecuación cartesiana del lugar geométrico de los puntos del plano tales que la suma de los cuadrados de sus distancias a los puntos (0, 0) y (1, 1) es igual a 9. Si se trata de una curva cerrada, calcula el área que encierra.

[Sol]
$$x^2 + y^2 - x - y - \frac{7}{2} = 0$$
; $A = 4\pi u^2$.

Tipo II. Circunferencias

- **6.** Escribe la ecuación de las siguientes circunferencias:
- a) de centro C(1, -5) y radio 5,
- b) de centro C(2, -2) y que pasa por P(3, 1),
- c) de centro C(2, -1) y tangente al eje OX,
- d) de centro C(-2, -1) y tangente a la recta s:x + 5y 2 = 0,
- e) de diámetro el segmento de extremos A(-4, 1) y B(2, 3).

[Sol] a)
$$(x-1)^2 + (y+5)^2 = 25$$
; b) $(x-2)^2 + (y+2)^2 = 10$; c) $(x-2)^2 + (y+1)^2 = 1$;

d)
$$(x + 2)^2 + (y + 1)^2 = \frac{81}{26}$$
; e) $(x + 1)^2 + (y - 2)^2 = 10$.

- 7. a) [S] Los puntos A = (3, 0) y B = (0, 4) son puntos diametralmente opuestos de una circunferencia. Halla la ecuación de esta.
- b) [S] Los puntos (6, 0) y (0, 8) son diametralmente opuestos en una circunferencia. Calcula la ecuación de la misma y especifica sus valores característicos.

[Sol] a)
$$x^2 + y^2 - 3x - 4y = 0$$
; b) $x^2 + y^2 - 6x - 8y = 0$

- **8.** Determina el radio y el centro de las siguientes circunferencias:
- a) $x^2 + y^2 10x + 4y = 0$, b) $x^2 + y^2 3x + 2y 1 = 0$, c) $2x^2 + 2y^2 + 4x + y 3 = 0$.

[Sol] a) C(5, -2),
$$r = \sqrt{29}$$
; b) $C\left(\frac{3}{2}, -1\right)$, $r = \frac{\sqrt{17}}{2}$; c) $C\left(-1, -\frac{1}{4}\right)$, $r = \frac{\sqrt{41}}{4}$

- 9. Dada la circunferencia $x^2 + y^2 8x + 4y + 1 = 0$, determina la ecuación de otra concéntrica con ella
- a) de radio $\sqrt{2}$,
- b) que pase por el punto P(-3, 1).

[Sol] a)
$$x^2 + y^2 - 8x + 4y + 18 = 0$$
; b) $x^2 + y^2 - 8x + 4y - 38 = 0$.

10. Halla la ecuación de la circunferencia que pasa por los puntos A(-2, 3), B(1, 2) y tiene su centro en la recta x - 2y - 2 = 0.

[Sol]
$$(x + 2)^2 + (y + 2)^2 = 25$$
.

Tipo III: Elipses e hipérbolas

- 11. Halla la ecuación reducida de las siguientes elipses:
- a) distancia focal 4 y semieje menor 3, b) semidistancia focal 3 y eje mayor 10,
- c) pasa por el punto (8, 3) y su excentricidad es $\frac{\sqrt{3}}{2}$

[Sol] a)
$$\frac{x^2}{13} + \frac{y^2}{9} = 1$$
; b) $\frac{x^2}{25} + \frac{y^2}{16} = 1$; c) $\frac{x^2}{100} + \frac{y^2}{25} = 1$.

12. [S] Calcula la ecuación de la elipse cuyos focos son los puntos F(-1, 2) y F'(3, 2), y su excentricidad es igual a $\frac{1}{3}$. [Sol] $\frac{(x-1)^2}{36} + \frac{(y-2)^2}{32} = 1$

13. Determina los elementos de las siguientes elipses:

a)
$$\frac{x^2}{144} + \frac{y^2}{36} = 1$$

b)
$$2x^2 + 25y^2 = 50$$

[Sol] a) Centrada en el origen; eje mayor el eje OX; $a=12, b=6, c=\sqrt{108}$; b) Centrada en el origen; eje mayor el eje OX; $a=5, b=\sqrt{2}$, $c=\sqrt{23}$;

- 14. Halla la ecuación reducida de las siguientes hipérbolas:
- a) distancia focal 10 y eje imaginario 6, b) semidistancia focal 3 y eje real 4,
- c) pasa por el punto (-3, 2) y su excentricidad es $\sqrt{\frac{5}{3}}$

[Sol] a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
; b) $\frac{x^2}{4} - \frac{y^2}{5} = 1$; c) $\frac{x^2}{3} - \frac{y^2}{2} = 1$.

15. [S] Dé la definición de hipérbola. Encuentre la ecuación de la hipérbola que tiene por focos los puntos F = (-3, 0) y F'(3, 0) y que pasa por el punto $P(8, 5\sqrt{3})$.

[Sol]
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
.

16. Determina los elementos y las asíntotas de las siguientes hipérbolas:

a)
$$\frac{x^2}{169} - \frac{y^2}{25} = 1$$

b)
$$72x^2 - y^2 = 2$$

[Sol] a) Centrada en el origen; eje real, el eje OX; a = 13, b = 5, $c = \sqrt{194}$, asíntotas $y = \pm \frac{5}{13}x$;

b) Centrada en el origen; eje real, el eje OX; $a=6, b=\sqrt{2}$, $c=\sqrt{38}$, asíntotas $y=\pm\frac{\sqrt{2}}{6}x$;

Tipo IV: Parábolas

17. En cada caso, halla la ecuación y los restantes elementos de las parábolas:

- a) directriz x = 0, vértice (2, 3),
- b) foco F(5, 2), vértice V(5, -3),
- c) directriz y = 2, foco F(0, 1),

[Sol] a) F(4, 3); eje, y = 3; p = 4; $(y - 3)^2 = 8(x - 2)$; b) directriz, y = -8; eje, x = 5; p = 10; $(x - 5)^2 = 20(y + 3)$; c) eje, x = 0; $v\left(0, \frac{3}{2}\right)$; p = 1; $x^2 = -2\left(y - \frac{3}{2}\right)$.

18. [S] Encuentra la ecuación de la parábola cuya directriz es la recta y = x y cuyo foco es el punto (2, 0).

[Sol]
$$x^2 + y^2 + 2xy - 8x + 8 = 0$$
.

19. Determina el foco, la directriz, el eje, el vértice y el parámetro de las siguientes parábolas: a) $y^2 = 8x$ b) $y^2 = -4x$ c) $x^2 = 4y$

[Sol] a)
$$F(2, 0)$$
; $x = -2$; $y = 0$; $V(0, 0)$; $p = 4$; b) $F(-1, 0)$; $x = 1$; $y = 0$; $V(0, 0)$; $p = 2$; c) $F(0, 1)$, $y = -1$, $x = 0$, $V(0, 0)$, $p = 2$;