
Derivadas. (Pendientes de Matemáticas I)

Tipo I: Tasas y derivadas

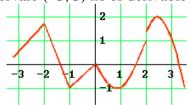
1. Halla la tasa de variación media en el intervalo [1, 4] de las funciones:

- a) $f(x) = x^2 + 2$ b) $f(x) = x^2 + 2x$ c) $f(x) = -x^2 + 2x$
- [sol] a) 5; b) 7; c) -3.
- 2. Calcula la tasa de variación media en el intervalo [2, 4] para cada una de las funciones:

[sol] a) $\frac{1}{2}$; b) 1; c) -3/2

Tipo II: Teoría de derivadas

- 3. Observa las figuras anteriores.
 - a) En el punto x = 2, ¿cuál de ellas tiene derivada mayor?
 - b) En el punto x = 4, ¿cuál de ellas tiene derivada negativa?
 - c) En cada caso, indica (aproximadamente) los puntos con derivada 0.


[sol] a); a); c) En a), 3; en b), 2, 3 y 4; en c), 2, 2,5, 3,3 y 4.

4. Halla los puntos de la curva $y = x^3 - 3x^2 + 2$ en los que su derivada vale:

a) -3

- b) 0
- c) 2

- [sol] a) 1; b) 0 y 2; c) $\frac{3 \pm \sqrt{15}}{3}$
- 5. Halla la ecuación de la recta tangente a $f(x) = x^2 + 3x$ en el punto x = -1. Representa gráficamente la curva y la tangente. [sol] y = x - 1
- **6**. ¿En qué puntos del intervalo (-3, 3) no es derivable la siguiente función? Indica el motivo.

[sol] -2, -1, 0, 2.

- 7. ¿Para qué valor de k es derivable la función $f(x) = \begin{cases} x^2 + kx, & x < -1 \\ x 1, & x \ge -1 \end{cases}$ en el punto x = -1?
- [sol] 3.
- 8. ¿Para qué valor o valores de k es derivable la función $f(x) = \begin{cases} k^2 x^2 + x, & x < -1 \\ x 1, & x \ge -1 \end{cases}$ en el punto x = x + 1-1?[sol] Nunca.

Tipo III: Práctica de derivadas

Deriva y simplifica los cálculos cuando sea posible.

9. a)
$$y = 2x^2 - 5x + 6$$

9. a)
$$y = 2x^2 - 5x + 6$$
 b) $y = -3x^4 + 2x^2 + 7x - 3$ c) $y = x^4 - 5x^3 + 2x$ d) $y = \frac{2}{3}x^3 - x$

[sol] a)
$$y' = 4x - 5$$
; b) $y' = -12x^3 + 4x + 7$; c) $y' = 4x^3 - 15x^2 + 2$; d) $y' = 2x^2 - 1$

10. a)
$$y = \frac{3}{4}x^4 + 7x$$
 b) $y = \frac{3x^4}{4} + 7x$ c) $y = \frac{3x^4 + 7x}{4}$ d) $y = \frac{3}{4}(x^4 + 7x)$

b)
$$y = \frac{3x^4}{4} + 7x$$

c)
$$y = \frac{3x^4 + 7x}{4}$$

d)
$$y = \frac{3}{4}(x^4 + 7x)$$

[sol] a)
$$y'=3x^3+7$$
; b) $y'=3x^3+7$; c) $y'=\frac{12x^3+7}{4}$; d) $y'=3x^3+\frac{21}{4}$

11. a)
$$y = (x+4)^5$$
 b) $y = (3x-2)^4$ c) $y = (x^2+2)^3$ d) $y = 2(4x-7)^3$

b)
$$y = (3x-2)^4$$

c)
$$y = (x^2 + 2)^3$$

d)
$$v = 2(4x - 7)^3$$

[sol] a)
$$y' = 5(x+4)^4$$
; b) $y' = 12(3x-2)^3$; c) $y' = 6x(x^2+2)^2$; d) $y' = 24(4x-7)^2$;

12. a)
$$y = \frac{2x-3}{x^2-3}$$

b)
$$y = \frac{2x}{x^2 + 3x}$$

12. a)
$$y = \frac{2x-3}{5x}$$
 b) $y = \frac{2x}{x^2+3x}$ c) $y = \frac{2}{4x^2+3}$ d) $y = \frac{3x}{x^2-1}$

d)
$$y = \frac{3x}{x^2 - 1}$$

[sol] a)
$$y' = \frac{3}{5x^2}$$
; b) $y' = \frac{-2x^2}{(x^2 + 3x)^2}$; c) $y' = \frac{-16x}{(4x^2 + 3)^2}$; d) $y' = \frac{-3x^2 - 3}{(x^2 - 1)^2}$

13. a)
$$y = \sqrt{3x^2 + 4x - 5}$$
 b) $y = \sqrt{x^4 + 4x}$ c) $y = \sqrt{(1 + 5x)^3}$

b)
$$y = \sqrt{x^4 + 4x}$$

c)
$$y = \sqrt{(1+5x)^3}$$

[sol] a)
$$y' = \frac{3x+2}{\sqrt{3x^2+4x-5}}$$
; b) $y' = \frac{2x^3+2}{\sqrt{x^4+4x}}$; c) $y' = \frac{15}{2}\sqrt{1+5x}$;

14. a)
$$y = 2^{x^2 - 3}$$

14. a)
$$y = 2^{x^2-3}$$
 b) $y = 3^{2x-x^2}$ c) $y = e^{-x+3}$ d) $y = 2e^{5x}$

d)
$$y =$$

[sol] a)
$$y' = 2x \cdot 2^{x^2 - 3} \ln 2$$
; b) $y' = (2 - 2x) \cdot 3^{2x - x^2} \ln 3$; c) $y' = -e^{-x + 3}$; d) $y' = 10e^{5x}$

$$\lim_{n \to \infty} y = (2 - 2x)^n$$

$$\lim_{n \to \infty} y = 0$$

$$= 0$$

15. a)
$$y = \log(x^2 + 3x)$$
 b) $y = \log(3x + 4)^7$ c) $y = \ln(2x^2 + 3)$ d) $y = 2\ln(x^2 + 3)$

b)
$$y = \log(3x+4)^7$$

$$n(2x^2+3)$$

d)
$$y = 2\ln(x^2 + 3)$$

[sol] a)
$$y' = \frac{2x+3}{x^2+3x} \log e$$
; b) $y' = \frac{21}{3x+4}$; c) $y' = \frac{4x}{2x^2+3}$; d)

16. a)
$$y = 3sen x - 5\cos x$$

b)
$$y = x \operatorname{sen} 3x$$

c)
$$y = \cos x \cdot \sin x$$

d)
$$y = e^{\cos x}$$

[sol] a)
$$y' = 3\cos x + 5senx$$
; b)

[sol] a)
$$y' = 3\cos x + 5senx$$
; b) $y' = sen3x + 3x\cos 3x$; c) $y' = \cos 2x$; d) $y' = -senxe^{\cos x}$

Tipo IV: Variación y representación gráfica de funciones

17. Indica los intervalos de crecimiento y decrecimiento de cada una de las siguientes funciones:

a)
$$f(x) = x^2 + 2x$$

b)
$$f(x) = -x^2 + 2x$$

a)
$$f(x) = x^2 + 2x$$
 b) $f(x) = -x^2 + 2x$ c) $f(x) = x^3 - 3x^2 + 2$

d)
$$f(x) = -x^3 + 2x$$

[sol] a) x < -1, decrece; x > -1, crece. b) si x < 1, decrece; si x > 1, crece.

[sol] a)
$$x < -1$$
, decrece; $x > -1$, crece. b) si $x < 1$, decrece; si $x > 1$, crece. c) Crece: $(-\infty, 0) \cup (2, +\infty)$; Decrece: $(0, 2)$ d) Crece: $(-\sqrt{2}, \sqrt{2})$; Decrece: $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

ece:
$$\left(-\infty, -\sqrt{2}\right) \cup \left(\sqrt{2}, \infty\right)$$

18. Representa gráficamente las funciones:

a)
$$f(x) = |x^2 - 4|$$
 b) $f(x) = \frac{1}{x^2}$ c) $f(x) = \frac{x^2}{x - 1}$ d) $f(x) = \frac{1}{x + 3}$ e) $f(x) = \frac{-2}{x - 1}$

b)
$$f(x) = \frac{1}{x^2}$$

c)
$$f(x) = \frac{x^2}{x-1}$$

$$f(x) = \frac{1}{x+3}$$

e)
$$f(x) = \frac{-2}{x-1}$$